Disintegration-of-measure Techniques for Commuting Multivariable Weighted Shifts
نویسنده
چکیده
We employ techniques from the theory of disintegration of measures to study the Lifting Problem for commuting n-tuples of subnormal weighted shifts. We obtain a new necessary condition for the existence of a lifting, and generate new pathology associated with bringing together the Berger measures associated to each individual weighted shift. For subnormal 2-variable weighted shifts, we then find the precise relation between the Berger measure of the pair and the Berger measures of the shifts associated to horizontal rows and vertical columns of weights.
منابع مشابه
The Lifting Problem for Hyponormal Pairs of Commuting Subnormal Operators
We construct three different families of commuting pairs of subnormal operators, jointly hyponormal but not admitting commuting normal extensions. Each such family can be used to answer in the negative a 1988 conjecture of RC, P. Muhly and J. Xia. We also obtain a sufficient condition under which joint hyponormality does imply joint subnormality. Our tools include the use of 2-variable weighted...
متن کاملVon Neumann’s Inequality for Commuting Weighted Shifts
We show that every multivariable contractive weighted shift dilates to a tuple of commuting unitaries, and hence satisfies von Neumann’s inequality. This answers a question of Lubin and Shields. We also exhibit a closely related 3-tuple of commuting contractions, similar to Parrott’s example, which does not dilate to a 3-tuple of commuting unitaries.
متن کاملSubnormality for arbitrary powers of 2-variable weighted shifts whose restrictions to a large invariant subspace are tensor products
The Lifting Problem for Commuting Subnormals (LPCS) asks for necessary and sufficient conditions for a pair of subnormal operators on Hilbert space to admit commuting normal extensions. We study LPCS within the class of commuting 2-variable weighted shifts T ≡ (T1, T2) with subnormal components T1 and T2, acting on the Hilbert space l (Z+) with canonical orthonormal basis {e(k1,k2)}k1,k2≥0 . Th...
متن کاملk-HYPONORMALITY OF MULTIVARIABLE WEIGHTED SHIFTS
We characterize joint k-hyponormality for 2-variable weighted shifts. Using this characterization we construct a family of examples which establishes and illustrates the gap between k-hyponormality and (k+1)-hyponormality for each k ≥ 1. As a consequence, we obtain an abstract solution to the Lifting Problem for Commuting Subnormals. 1. Notation and Preliminaries The Lifting Problem for Commuti...
متن کاملSubnormality of 2-variable weighted shifts with diagonal core Subnormality of 2-variable weighted shifts with diagonal core ⋆
The Lifting Problem for Commuting Subnormals (LPCS) asks for necessary and sufficient conditions for a pair of subnormal operators on Hilbert space to admit commuting normal extensions. Given a 2-variable weighted shift T with diagonal core, we prove that LPCS is soluble for T if and only if LPCS is soluble for some power Tm (m ∈ Z+,m ≡ (m1,m2),m1,m2 ≥ 1). We do this by first developing the bas...
متن کامل